If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X^2-104=0
We add all the numbers together, and all the variables
6X^2-104=0
a = 6; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·6·(-104)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{39}}{2*6}=\frac{0-8\sqrt{39}}{12} =-\frac{8\sqrt{39}}{12} =-\frac{2\sqrt{39}}{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{39}}{2*6}=\frac{0+8\sqrt{39}}{12} =\frac{8\sqrt{39}}{12} =\frac{2\sqrt{39}}{3} $
| -31=-y/8 | | X^3+2x^2+x-1=0 | | 1.64g-7=0.38 | | 6z-6=z=19 | | 6d−11/2=2d−13/2 | | 4-3d=d-7 | | 13=4v+9 | | 3x+2(x-8)=12 | | 4/d+3=15 | | x^2=25/841 | | 7x+11=135 | | 8x-20-7x=11 | | u/7=-30 | | 7z-19z=72 | | 3/4=m+1/4/ | | -11f=9(1-2f)+5 | | x⁴=624 | | 9=5p-6=29 | | x^2=49/676 | | 2(7s+9)-8s=2(3s+1)-4 | | -16-7(2a3)=23-2a | | k-22=29 | | 7(x-13)=212 | | -7a+21=11-7a | | 4r+r-3=3(3r+4) | | X^2-4=y | | (x+10/4)=3/2 | | 3x=20=5x-16 | | 6n/2=-11 | | 6=0.01x^2+1.18x+2 | | n/2=6n | | -3(x+6)=-2(x=7) |